\(\int \frac {(A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\) [1050]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [A] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 41, antiderivative size = 271 \[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a b \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}}+\frac {2 A \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \]

[Out]

2*(A*b^2-a*(B*b-C*a))*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)-2*(A*b^2-a*(B*b-C*a))*(cos(1/2*d*x+1/2*c
)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/a/b
/(a^2-b^2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+2*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(
1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/b/d/(a+b*cos(d*x+c))^(1/2)+2*A*(cos(1/2
*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x
+c))/(a+b))^(1/2)/a/d/(a+b*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.220, Rules used = {3134, 3138, 2734, 2732, 3081, 2742, 2740, 2886, 2884} \[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (a^2 C-a b B+A b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a b d \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 A \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}}+\frac {2 C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}} \]

[In]

Int[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(-2*(A*b^2 - a*b*B + a^2*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(a*b*(a^2 - b^2)*d
*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + (2*C*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a
 + b)])/(b*d*Sqrt[a + b*Cos[c + d*x]]) + (2*A*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2
*b)/(a + b)])/(a*d*Sqrt[a + b*Cos[c + d*x]]) + (2*(A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[
a + b*Cos[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {2 \int \frac {\left (\frac {1}{2} A \left (a^2-b^2\right )-\frac {1}{2} a (A b-a B+b C) \cos (c+d x)-\frac {1}{2} \left (A b^2-a (b B-a C)\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{a \left (a^2-b^2\right )} \\ & = \frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {2 \int \frac {\left (-\frac {1}{2} A b \left (a^2-b^2\right )-\frac {1}{2} a \left (a^2-b^2\right ) C \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{a b \left (a^2-b^2\right )}+\frac {\left (-A b^2+a (b B-a C)\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{a b \left (a^2-b^2\right )} \\ & = \frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {A \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{a}+\frac {C \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{b}+\frac {\left (\left (-A b^2+a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{a b \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \\ & = -\frac {2 \left (A b^2-a b B+a^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a b \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {\left (A \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{a \sqrt {a+b \cos (c+d x)}}+\frac {\left (C \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{b \sqrt {a+b \cos (c+d x)}} \\ & = -\frac {2 \left (A b^2-a b B+a^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a b \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}}+\frac {2 A \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \\ \end{align*}

Mathematica [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx \]

[In]

Integrate[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

Integrate[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + d*x])^(3/2), x]

Maple [A] (verified)

Time = 5.80 (sec) , antiderivative size = 547, normalized size of antiderivative = 2.02

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b -a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\frac {2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )}{b \sqrt {-2 b \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}-\frac {2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right )}{a \sqrt {-2 b \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}-\frac {2 \left (-A \,b^{2}+B a b -a^{2} C \right ) \sqrt {-2 b \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, b E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )\right )}{a b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-a -b \right ) \left (a^{2}-b^{2}\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}\, d}\) \(547\)
parts \(\text {Expression too large to display}\) \(968\)

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2*b-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C/b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2
*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1
/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-2*A/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1
/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^
(1/2))-2*(-A*b^2+B*a*b-C*a^2)/a/b/sin(1/2*d*x+1/2*c)^2/(2*b*sin(1/2*d*x+1/2*c)^2-a-b)/(a^2-b^2)*(-2*b*sin(1/2*
d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*b*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2)
)*a-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*b*EllipticE(cos(1/2*d*x+1
/2*c),(-2*b/(a-b))^(1/2))))/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)/(a+b*cos(d*x+c))**(3/2),x)

[Out]

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec(c + d*x)/(a + b*cos(c + d*x))**(3/2), x)

Maxima [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sec(d*x + c)/(b*cos(d*x + c) + a)^(3/2), x)

Giac [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sec(d*x + c)/(b*cos(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{\cos \left (c+d\,x\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + b*cos(c + d*x))^(3/2)),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + b*cos(c + d*x))^(3/2)), x)